Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Azido{1-[2-(dimethylamino)ethylimino-methyl]naphthalenolato}copper(II)

Qi-Yong Zhu, Yi-Jun Wei* and Feng-Wu Wang

Department of Chemistry, Huainan Normal College, Huainan 232001, People's Republic of China

Correspondence e-mail: huainanweiyijun@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.049 wR factor = 0.139Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title mononuclear copper(II) complex, $[Cu(C_{15}H_{17}N_2O)N_3]$, the Cu^{II} ion is four-coordinate in a square-planar geometry defined by the imine and amine N atoms, the naphthalenolate O atom of the Schiff base and a terminal N atom of the azide anion.

Received 21 March 2006 Accepted 23 March 2006

Comment

Schiff base ligands have played an important role in the development of coordination chemistry as they readily form stable complexes with most transition metal ions (Pal et al., 2005; Ueno et al., 2004). During the last few years, there has been a great effort to identify the biological role of copper, primarily through techniques associated with the interface of biology, biochemistry and coordination chemistry (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002). It appears that the biological role of copper is primarily in redox reactions and as a biological catalyst, although much remains to be understood (Musie et al., 2003; García-Raso et al., 2003). An extensive effort has been made to prepare and characterize a variety of copper(II) coordination complexes in an attempt to model the physical and chemical behaviour of copper-containing enzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination number four, five, and six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998). Recently, we reported a mononuclear copper(II) complex, azido{2,4dichloro-6-[2-(diethylamino)ethyliminomethyl]phenolato}copper(II), (II), derived from the Schiff base ligand 2,4dichloro-6-[2-(diethylamino)ethyliminomethyl]phenol (Wei & Wang, 2006). As an extension of our work on complexes derived from the Schiff bases (Wei, 2005a,b), the title copper(II) complex, (I), has been investigated.

The Cu^{II} ion in (I) is four-coordinated by imine and amine N atoms, a naphthalenolate O atom derived from the Schiff base and a terminal N atom of the azide anion, giving a square planar geometry (Fig. 1). The Cu-ligand bond lengths (Table 1) are comparable with the corresponding values observed in (II), and within normal ranges expected for Cu-Schiff base structures (Hebbachi & Benali-Cherif, 2005; Butcher *et al.*, 2003; Elmali *et al.*, 2000; Warda *et al.*, 1997). The bond angles around the central metal in (I) are comparable to

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

those in (II), and also show some deviations from ideal square-planar geometry (Table 1). In the crystal structure, molecules are linked by weak C12—H12 $A \cdot \cdot \cdot$ O1 hydrogen bonds [C12—H12A = 0.97 Å, H12 $A \cdot \cdot \cdot$ O1ⁱ = 2.56 Å, C12 $\cdot \cdot \cdot$ O1ⁱ = 3.33 Å and C12—H12 $A \cdot \cdot \cdot$ O1ⁱ = 136°; symmetry code: (i) $\frac{1}{2} - x, -\frac{1}{2} + y, z$], forming chains running along the b axis (Fig. 2).

Experimental

2-Hydroxy-1-naphthaldehyde (1.0 mmol, 172.2 mg), N,N-dimethylethane-1,2-diamine (1.0 mmol, 88.2 mg), NaN $_3$ (1.0 mmol, 65.3 mg) and $Cu(CH_3COO)_2 \cdot H_2O$ (1.0 mmol, 199.1 mg) were dissolved in MeOH (150 ml). The mixture was refluxed at 340 K for about 1 h to give a clear blue solution. After keeping the cooled solution in the dark for 13 d, blue block-shaped crystals of (I) were formed.

Crystal data

$[Cu(C_{15}H_{17}N_2O)N_3]$	Mo $K\alpha$ radiation
$M_r = 346.88$	Cell parameters from 10382
Orthorhombic, Pbca	reflections
a = 7.568 (1) Å	$\theta = 2.6 - 27.5^{\circ}$
b = 13.306 (1) Å	$\mu = 1.44 \text{ mm}^{-1}$
c = 30.280 (2) Å	T = 298 (2) K
$V = 3049.2 (5) \text{ Å}^3$	Block, blue
Z = 8	$0.22 \times 0.12 \times 0.10 \text{ mm}$
$D_x = 1.511 \text{ Mg m}^{-3}$	

Data collection

Bruker SMART CCD area-detector	3486 independent reflections
diffractometer	2935 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.026$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 9$
$T_{\min} = 0.742, T_{\max} = 0.869$	$k = -17 \rightarrow 17$
32372 measured reflections	$l = -38 \rightarrow 38$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0653P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.049$	+ 3.4391 <i>P</i>]
$wR(F^2) = 0.139$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
3486 reflections	$\Delta \rho_{\text{max}} = 1.04 \text{ e Å}^{-3}$
201 parameters	$\Delta \rho_{\min} = -0.29 \text{ e Å}^{-3}$
H-atom parameters constrained	

 Table 1

 Selected geometric parameters (\mathring{A} , °).

Cu1-O1	1.818 (2)	Cu1-N3	1.904 (3)
Cu1-N1	1.839 (2)	Cu1-N2	1.952 (3)
O1-Cu1-N1	94.05 (10)	O1-Cu1-N2	179.06 (11)
O1-Cu1-N3	89.40 (12)	N1-Cu1-N2	86.80 (12)
N1-Cu1-N3	176.01 (13)	N3-Cu1-N2	89.74 (13)

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with $U_{\rm iso}({\rm H})$ = 1.2 or 1.5 $U_{\rm eq}({\rm C})$. An unassigned maximum residual density peak was observed 1.23 Å from atom C13.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1997); software used to prepare material for publication: *SHELXTL*.

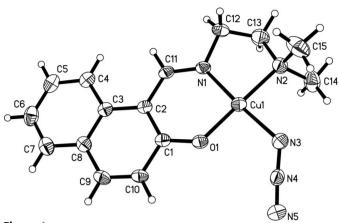
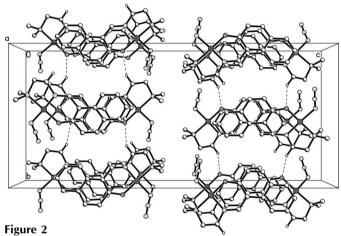



Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

The crystal packing of (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

The authors thank the Education Office of Anhui Province, People's Republic of China, for research grant No. 2004kj326.

References

Arnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). *Inorg. Chim. Acta*, 348, 143–149.

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Butcher, R. J., Mockler, G. M. & McKern, O. (2003). *Acta Cryst.* E**59**, m1104–m1106.

Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19–40.
 Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304

García-Raso, Á., Fiol, J. J., López-Zafra, A., Castro, J. A., Cabrero, A., Mata, I. & Molins, E. (2003). Polyhedron, 22, 403–409.

Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188–m1190.
Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213.

Musie, G. T., Li, X. & Powell, D. R. (2003). *Inorg. Chim. Acta*, 348, 69–74.
Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H.,
Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). *Inorg. Chem.* 44, 3880–3889

Raptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). *Inorg. Chim. Acta*, 272, 283–290

metal-organic papers

- Ray, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). *Polyhedron*, **22**, 617–624.
- Reddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). *Inorg. Chem. Commun.* **3**, 322–324.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL97 and SHELXS97. University of Göttingen, Germany; SHELXTL. V5.1. Bruker AXS, Inc., Madison, Wisconsin USA
- Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). *Polyhedron*, **21**, 2547–2554.
- Ueno, T., Ohashi, M., Kono, M., Kondo, K., Suzuki, A., Yamane, T. & Watanabe, Y. (2004). *Inorg. Chem.* 43, 2852–2858.
- Warda, S. A., Friebel, C., Sivý, J., Plesch, G. & Bláhová, M. (1997). Acta Cryst. C53, 50–54.
- Wei, Y.-J. (2005a). Acta Cryst. E61, m1085-m1087.
- Wei, Y.-J. (2005b). Acta Cryst. E61, m1088-m1089.
- Wei, Y.-J. & Wang, F.-W. (2006). Acta Cryst. E62, m309-m311.